Ja n 20 07 Rashba quantum wire : exact solution and ballistic transport

نویسندگان

  • C A Perroni
  • D Bercioux
  • V Marigliano Ramaglia
  • V Cataudella
چکیده

The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wave function and eigenvalue equation are worked out pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within the perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is done with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analyzed injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin selective bound states. Rashba quantum wire: exact solution and ballistic transport 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rashba quantum wire: exact solution and ballistic transport.

The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is...

متن کامل

2 00 4 Rashba spin splitting in quantum wires

This article presents an overview of results pertaining to electronic structure, transport properties, and interaction effects in ballistic quantum wires with Rashba spin splitting. Limits of weak and strong spin–orbit coupling are distinguished, and spin properties of the electronic states elucidated. The case of strong Rashba spin splitting where the spin–precession length is comparable to th...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Strongly modulated transmission of a spin-split quantum wire with local Rashba interaction

We investigate the transport properties of ballistic quantum wires in the presence of Zeeman spin splittings and a spatially inhomogeneous Rashba interaction. The Zeeman interaction is extended along the wire and produces gaps in the energy spectrum, which allow electron propagation only for spinors lying along a certain direction. For spins in the opposite direction, the waves are evanescent f...

متن کامل

Conductance in quantum wires by three quantum dots arrays

A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007